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Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) 
isotropy conditions for relativistic perfect-fluid spheres are generalized. 
Solutions are spherically symmetric and conformally flat. 

1. I N T R O D U C T I O N  

For a spherically symmetric metric 

ds 2 = e2~ d~2 _ e2~(d~2 + f 2  dO2 + f 2  sin ~ 0 d~b 2) (1.1) 

where f i s  a function of  ~ alone and A,/z are functions of  ~ and 7/. Einstein's 
equation for a perfect fluid reduces to 

e2(~-~>(4K3 2 - 2K1K~) = K x K 2 . "  (1.2) 

where 

f '  , + f ~  f '~ 1 
K1 = / ~ " +  h " +  A ' 2 - / x  ' 2 -  2 ) , ' / x ' - f ( / x  + A') - -  f2  + p  

f '  f "  f._~ 1 K2 =/~" - h" + f,,2 _ h,2 + f (3/~' - h') + 7 + . ~  f 2  (1.3) 

K 3  = 12' - ~,12 

/z' -_- O/z/Or 12 - Otx/~?, A - aA/O-q, A' - OA/O$, and so on; (x x, X z, x 2, x 4) - 
(~, O, r 7) provided the pressure p, density p, and velocity t# Of the fluidare 
given by 

8~rp = G2 2 8~ = e-~K1 -G4*  (1.4) 
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e2~,(vl)2 = e -2"K12  
4 e -  2aK~a -- e -  2UK12 

e2a(v4) 2 = 4e - 2aK 8  2 
4e_  2a K8 2 _ e_  ~. K12 (1.5) 

v 2 = O  

V a = 0  

where G, ~ = R, ~ - (1/2)8,VR, Ru~ being the Ricci tensor. (1.2) is the isotropy 
condition of  Walker (1935). This equation can be simplified if we note that 
there exists a choice of  coordinates that keeps the form of  (1.1) intact but sets 
v ~ = 0, and hence by (1.4), K~ = 0. (1.2) then merely means Ka = 0. Such 
coordinates are known as comoving coordinates and such solutions have 
been obtained by many authors, e.g., Bonnor and Faulkes (1967), Cahill and 
Taub (1971). However, all such solutions have not been found and obviously 
the solutions found are the ones that are expressible in terms of  simple 
functions. Since a solution that cannot be expressed in terms of simple 
functions in a comoving system might be expressible in terms of  simple func- 
tions in some other coordinate system, say a noncomoving one, McVittie and 
Wiltshire have felt that there is a need for looking into solutions of  (1.1) in a 
noncomoving System as well, i.e., when 

K I # 0  

and (I) 

In order to obtain 
assumed 

where 

K s # 0  

such solutions of  (1.2), McVittie and Wiltshire have 

a = ~ + ~r ~ = /3  + ~ (1.6) 

=/~(z)  ~z = ~ ( v )  ~ = ~(v) z = h(~) + g(v) 

(1.7) 

h , g  being two functions. 
Then they consider two different cases. 

Case  1. 

g =  0 

Case  2. 

0.8)  

= ag  a being a constant (1.9) 

In the present work we shall attempt to generalize some of  these solutions. 
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2.  S O L U T I O N S  F O R  g = 0 

In view of  (1.7), without loss of  generality, one can set 

Z = f (2.1) 

(1.2) then reduces to 

e2(~-~+*-')[4(4~')2 - 2(6 - 4~)K~] - K~Kz = 0 (2.2) 

In view of  (1.7) and (2.1), a, fl,/(1, K2 are functions o f  ~ only. Equat ion (2.2) 
has been completely solved by McVittie and Wiltshire subject to further 
assumptions:  

and 

where c is a constant.  

1~ = a - l n f  (2 .3)  

/(1 = 2c~ 'z (2.4) 

Here we at tempt  to solve (2.2) for the case when (2.3) holds, but  (2.4) 
does not  hold, i.e., 

K1 # 2ca '2 (II) 

for  any constant  c. 
F rom  (1.1), (1.6), (1.7), and (2.1) we note that  by a coordinate transforma- 

t ion ~' = f exp [2(6 - ~b)] dv one can set 

�9 r = ~ ( 2 . 5 )  

without  loss of  generality or violation of  any of  the previous equations or 
conditions. Since a, ]3, K1 are functions of  f only (2.3) and (II) remain intact: 

e~(B-r 2 - 2(~ - 42)K1] - K~K2 = 0 (2.6) 

Differentiating (2.6) with respect to ~, 

4a,2e2(~-r ~ (42) _ 2Kle2(~-~o d .. (6 - 4 z) = 0 (2.7) 

Since a, 13, K1 are functions of  r and ~ is a function ofT,  (2.7) can hold only if 

42 = constant (2.8) 

- 42 = constant (2.9) 

However,  it is easy to note that  (2.9) follows from (2.8) and one can without 
loss of  generality or violation of  previous condition set 

~b = n (2.10) 

and (2.6) reduces to 

e 2(B- ~)(4a 'z + 2K1) = K1K2 (2.11) 
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Putting (1.6), (1.7), (2.1), and (2.3) into (1.1) we note that a coordinate 
transformation of  the form 

e' =fde 
makes 

fl = a f =  1 (2.12) 

Since such a transformation does not involve ~, this will keep (2.5) and (2.10) 
intact. So do all the other previous equations applicable here. Inequality (II), 
however, may not hold any longer. But that is immaterial, because once (2.5) 
and 2.10) remain intact, we do not need (II) anymore.  From (1.3), (1.6), (1.7), 
(2.1), (2.11), and (2.12) we get 

6~" - 2~ '2 + 3 = 0 (2.13) 

which can easily be integrated to get ~ explicitly in terms of  r Thus the metric 
takes the form 

ds ~ = e2(~+,)[d~12 _ d~2 - dr221 (2.14) 

where a = a(~) is given by (2.13). 

and 

3. S O L U T I O N S  F O R  ~b = ag 

In this case McVittie and Wiltshire have further assumed 

f ,  f , 2  1 
f f 2  +~-~ = 0 

h" f ' h '  
_ _ _  = bh,2 

f 

(3.1) 

(3.2) 

h" = blh '2 + b2 (3.3) 

b, bl, b2 being constants. 
With these, the isotropy condition reduces to 

2h'2g2e2~a-~+ag-*)(fl~ - e~fl~ - a~)[K5 - (2a + b)u~] 

-- Kl(2e2~B-~+~o-*)(fl~ + a)(~ -- ~,~) + 2[ba(2flz - ~z) + f'-ff ] 

+ h'~[Ks + (2b~ - b)(2fl~ - ~)]~  0 (3.4) 
) 
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where K~ takes the form 

K~ = h'21%~ + flz~ + %z _ flZ - 2azflz + b(~ + fl~)] (3.5) 

and 

K5 =/3~ - %~ + t 2  - ~2 - b/3~ (3.6) 

(3.1), (3.2), and (3.3) have been completely solved by McVittie and Wiltshire 
to get the following four sets of solutions: 

Solution (1 ) f  = ~ h = ~ + N2 b --- 0 bl = 0 

Solution (2 ) f  = ~ h = _ 1  In (Na~) b = 261 # 0 bg. = 0 
Ol 

S~176 (3) f = 1 sin ( n l ~ ) - - n l  h = ~ In [Na sin (~-~)] (3.7) 

1 sinh (nl0  h = - ~  In N8 sinh Solution (4 ) f  = n~ 

b = 2b l  v ~ 0 n l  2 = - 4 b i b 2  

For each of these solutions of (3.1), (3.2), and (3.3), solutions of (3.4) have 
been obtained by McVittie and Wiltshire under various simplifying assump- 
tions, e.g., taking solution (1), together with assumptions 

a = 0 a =/3 and /3z~ - 13~ 2 # 0 (3.8) 

(3.4) has been completely solved by them. However, in the present work, we 
shall see that if ~ =/3 is assumed, then solution (1) is the only solution of 
(3.1), (3.2), and (3.3) that gives a solution of (3.4). Equation (3.4) will 
then be solved completely for both a = 0 and a # 0. This is as follows: 
Using (3.5), (3.6), and (3.8), one can reduce (3.4) to 

A U  + B V  + C +  D h  '2 = 0  (3.9) 

where 

A = (a + b)%(az~ - ~2 _ a~)  

C = (b~a~ - nl=k)(%~ - a~ 2 + b%) 

and 

B = (% + a)(%~ - %2 + ba~) 

b 
D = - ~  (~,~ - ~,~ + b%)o,~ 

(3.10) 

U -- g 2 e ~ - ~  V -- (~ - g % e  ~'c~-Y~ 
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where we note 

Ray 

1 d U  
V = 2-d-g - a V  (3.11) 

and k = 0 for solutions (1) and (2), k = 1 for solution (3), k = - 1  for 
solution (4), where from (3.7) we have noted that b -- 261 holds for all four 
solutions in (3.7) and f " / f =  -nx2k .  Also, it is to be noted in (3.11) that 
A, B, C are functions of Z;  U and V are functions of ~. 
where �9 is some function of ~. 

We shall now prove that D = 0. I f  possible, let D # 0. Treating ~7 as 
constant, differentiating (3.9) with respect to h, 

A~U + B~V + C~ + D~h "2 + 2Dh" = 0 

From (3.3), (3.9), and (3.12) 

[A(Dz + bD) - A z D I U  + [B(D~ + bD) - B~DI 
+ [C(Dz + bD) - (C~ + 2baD)D] = 0 

which can be rewritten 

where 

E(D~ + bD) - EzD = 0 

(3.12) 

(3.13) 

R = A U  + B V  + C - 2b2/bD (3.14) 

and in view of (3.10), b # 0 followed from D # 0. 
For D # 0, (3.13) can be integrated with respect to Z;  treating ~7 as 

constant, this gives 

E = tl)Debl z (3.15) 

Comparing (3.9) with (3.14) and (3.15) and using (1.6) 

(1)ebg = e -b~ (h '~ - -  2---~---~ 2) (3.16) 

Since the left-hand side of (3.16) is a function of ~/only and the right-hand 
side is a function of ~, they must both be equal to a constant. 

However, looking into solutions (1), (2), (3), and (4) of (3.7) we see that 
none can make the right-hand side of (3.16) a constant. Thus we must have 

D = 0 (3.17) 
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Also from (3.5), (3.8), and inequality (I) 

~ # 0  
a~z-- ~z 2 + b% # 0 

From (3.10), (3.17), and inequality (III) 

b = 0  

From (3.7), f a n d  h can only be given by solution (1), i.e., 

f = ~  
h = (b~/2)~ 2 + N2 

and in (3.10), 

(III) 

(3.18) 

(3.19) 

f = r h = r (3.22) 

Thus 

A U  + B V  + C = 0 (3.23) 

where owing to (3.18), (3.20), and (3.21), A, B, C are now given by 

A --- a~(c~z - a2  _ ac,~) B = (% + a)(%~ - %2) 

C = 2~(c~ - %2) (3.24) 

Equation (3.23) can be completely solved as follows. From (III), (3.18), and 
(3.24) 

C # 0 (IV) 

We shall also prove that B ~ 0. If  possible let B = 0. Then from (3.10) and 
(III), 

~ z + a = 0  

These two equations, in view of (3.24), mean 

A = 0  

From (3.9), (3.17), 

i.e., (3.19) reduces to 

k = 0 (3.20) 

From (3.5), (3.19), and inequality (I), we must have b2 ~ 0, and thus it is 
obvious that without loss of generality, one can set 

b2 = 2 N2 = 0 (3.21) 
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However ,  A -- 0, B = 0, C # 0 is incompat ible  with (3.23): 

B r  

F r o m  (3.23) and (V) 

(v)  

Either U = 0 or  (A/B)z = O. 

Case 1. 

U = 0  

F r o m  (3.11) and (3.26) 

(3.23) then reduces to 

A 0 __0 

i.e., U = constant  = Uo (say) 

V = constant  = - Uo 

Uo(A - s )  + c = 0 

where A, B, C are given by (3.24). 
Equat ion  (3.27) is an ordinary  second differential equat ion which gives 

a as a funct ion o f  Z. (3.26) can be explicitly writ ten 

g2e2(ag-v) = Uo (3.28) 

However ,  f rom (1.1), (1.6), (1.7), and (1.9) it is obvious tha t  by a suitable 
t rans format ion  of  W (where new qP is a funct ion o f  old W only), one can set 

= ag (3.29) 

F r o m  (3.28) we can then set 

g = ~(Uo) 1/2 Uo > 0 (3.30) 

By (3.22), Z = h + g as in (1.7). 

Case 2. 

(A)Bz = 0  i.e., A/B = constant  

Since U and V are functions of  7, if  in (3.25) A/B is a constant,  then C/B, 
being a funct ion o f  Z, can only be a constant.  However ,  f rom (3.24) we see 
that  C/B can only be a constant  if  either a = 0 or az = constant.  

(3.26) 

(3.27) 

A C 
U +  V + ~ = 0  (3.25) 

Differentiating (3.25) successively with respect to Z, treating ~/as a constant ,  
and  with respect to ~7, treating Z as constant,  
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S u b c a s e  2a. 

a = 0  

This is the case that  has ,been worked out by McVittie and Wiltshire. 
It  has been shown that  here the metric is the following conformally  fiat one:  

ds 2 = e2~[d~2 _ ds _ f 2  dO 2 _ f 2  sin 2 0 d~b 2] (3.31) 

whereas as before ~ = ~(Z).  Z is given by 

Z = ~:2 _ r/2 (3.32) 

S u b c a s e  2b. 

~z = constant  = r/2 (say) (3.33) 

Here A, B, C are constants and in view of  (3.11), (3.23) reduces to an 
ordinary differential equat ion in U which is readily integrable to give U as a 
function of~ .  g can then be taken as an arbi trary function oft/ ,  to get W from 
(3.1 l). However,  to simplify the final expressions we can, as in case I, set 

tF = ag (3.34) 

without any loss of  generality. 
From (3.11), (3.23), (3.24), (3.33), and (3.34), g is given by 

2n2 
+ - -  = 0 (3.35) 

a2 + n2 

which has trivial solutions, f a n d  h are given by (3.19), ~ is given as a function 
o f  Z ,  by (3.33) and Z = h + g as in (1.7). 

4. C O N C L U S I O N  

Summing up, we see that  for a metric of  the form (1.1) where 3, and/z  are 
given by (1.6) and (1.7), i f g  = 0 and (2.3) is satisfied, then all the solutions 
of  the isotropy condit ion that  are not given by McVittie and Wiltshire are 
given by a metric of  the form (2.14), where ~ = a(~:) is given by (2.13). 

When ). and t~ are given by (1.6), (1.7), but ~b = ag, then solutions o f  
(I .2), obtained by solving (3.1), (3.2), (3.3), and (3.4) for c~ =/3,  are as follows. 

Solutions reduce to three different cases in all of  which the metric has a 
spherically symmetric  and conformally flat fo rm:  

ds 2 = e2(~§ _ d~2 _ ~2 dO 2 _ ~2 sin 2 0 d4~ 2) (3.36) 

in case I, ~ is given as a function of  Z by (3.24) and (3.27) and Z = 
(2 + ~(U0)lj2 and g is given by (3.30). 
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An interesting point to note is that in all three cases, the Z = constant 
curve in the (~, ~7) plane is a conic section, a parabola in case l, a hyperbola 
in case 2a, and a hyperbola or ellipse in case 2b. This suggests that although 
Z was originally introduced to simplify the problem mathematically, Z could 
have some significance that goes beyond this. 

In fact, in case 2a, the case which was already solved by McVittie and 
Wiltshire, one can check from the expressions for velocity in (1.5) that Z can 
be interpreted as the velocity potential, i.e., velocity vu can be written 
v~, = xZ,u where X is some function. Moreover, we can check that p and p are 
functions of Z for case 2a, and hencep and p are functionally dependent, i.e., 
the fluid is barotropic. However, such a simple and interesting interpretation 
of  Z could not be obtained for cases 1 and 2b. 
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